ar X iv : m at h - ph / 0 50 90 56 v 1 2 6 Se p 20 05
نویسنده
چکیده
The parametric equations of the surfaces on which highly resonant quasiperiodic motions develop (lower-dimensional tori) cannot be analytically continued, in general, in the perturbation parameter ε, i.e. they are not analytic functions of ε. However rather generally quasi-periodic motions whose frequencies satisfy only one rational relation (“resonances of order 1”) admit formal perturbation expansions in terms of a fractional power of ε depending on the degeneration of the resonance. We find conditions for this to happen, and in such a case we prove that the formal expansion is convergent after suitable resummation.
منابع مشابه
ar X iv : m at h - ph / 0 50 90 39 v 1 1 9 Se p 20 05 JACK POLYNOMIALS IN SUPERSPACE : COMBINATORIAL ORTHOGONALITY
Jack polynomials in superspace, orthogonal with respect to a " combinatorial " scalar product, are constructed. They are shown to coincide with the Jack polynomials in superspace, orthogonal with respect to a " physical " scalar product, introduced in [5] as eigenfunctions of a supersymmetric quantum mechanical many-body problem. The results of this article rely on generalizing (to include an e...
متن کاملar X iv : m at h - ph / 0 10 90 32 v 1 2 8 Se p 20 01 No zero energy states for the supersymmetric x 2 y 2 potential
We show that the positive supersymmetric matrix-valued differential operator H = px 2 + py 2 + x2y2 + xσ3 + yσ1 has no zero modes, i.e., Hψ = 0 implies ψ = 0.
متن کاملar X iv : h ep - l at / 0 50 91 33 v 1 2 6 Se p 20 05 DESY 05 - 169 Edinburgh 2005 / 10 Structure of the Pion from Full Lattice QCD
D. Brömmel∗a,b, M. Diehla, M. Göckelerb, Ph. Häglerc, R. Horsleyd, D. Pleitere, P.E.L. Rakow f , A. Schäferb, G. Schierholza,e and J.M. Zanottie aTheory Group, Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg, Germany bInstitut für Theoretische Physik, Universtität Regensburg, 93040 Regensburg, Germany cInstitut für Theoretische Physik T39, Physik-Department der TU München, 85747 Garching, ...
متن کاملar X iv : m at h - ph / 0 40 90 33 v 1 1 5 Se p 20 04 HYPERELLIPTIC ADDITION LAW
We construct an explicit form of the addition law for hyperelliptic Abelian vector functions ℘ and ℘ ′. The functions ℘ and ℘ ′ form a basis in the field of hyperelliptic Abelian functions, i.e., any function from the field can be expressed as a rational function of ℘ and ℘ ′ .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005